Direct numerical simulation of auto-ignition of a hydrogen vortex ring reacting with hot air
نویسندگان
چکیده
Direct numerical simulation (DNS) is used to study chemically reacting, laminar vortex rings. A novel, all–Mach number algorithm developed by Doom, Hou, & Mahesh [1] is used. The chemical mechanism is a nine species, nineteen reaction mechanism for H2/air combustion proposed by Mueller et al. [2]. Diluted H2 at ambient temperature (300 K) is injected into hot air. The simulations study the effect of fuel/air ratios, oxidizer temperature, Lewis number and stroke ratio (ratio of piston stroke length to diameter). Results show that auto–ignition occurs in fuel lean, high temperature regions with low scalar dissipation at a ‘most reactive’ mixture fraction, ζMR (Mastorakos et al. [3]). Subsequent evolution of the flame is not predicted by ζMR; a most reactive temperature TMR is defined and shown to predict both the initial auto–ignition as well as subsequent evolution. For stroke ratios less than the formation number, ignition in general occurs behind the vortex ring and propagates into the core. At higher oxidizer temperatures, ignition is almost instantaneous and occurs along the entire interface between fuel and oxidizer. For stroke ratios greater than the formation number, ignition initially occurs behind the leading vortex ring, then occurs along the length of the trailing column and propagates towards the ring. Lewis number is seen to affect both the initial ignition as well as subsequent flame evolution significantly. non–uniform Lewis number simulations provide faster ignition and burnout time but a lower maximum temperature. The fuel rich reacting vortex ring provides the highest maximum temperature and the higher oxidizer temperature provides the fastest ignition time. The fuel lean reacting vortex ring has little effect on the flow and behaves similar to a non–reacting vortex ring.
منابع مشابه
Direct numerical simulation of turbulent, chemically reacting flows A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Jeffrey Joseph Doom IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
This dissertation: (i) develops a novel numerical method for DNS/LES of compressible, turbulent reacting flows, (ii) performs several validation simulations, (iii) studies auto–ignition of a hydrogen vortex ring in air and (iv) studies a hydrogen/air turbulent diffusion flame. The numerical method is spatially non-dissipative, implicit and applicable over a range of Mach numbers. The compressib...
متن کاملDNS of auto–ignition in turbulent diffusion H2/air flames
Direct numerical simulation (DNS) is used to study auto–ignition of turbulent diffusion flames. A novel, all–Mach number algorithm developed by Doom et al is used. The chemical mechanism is a nine species, nineteen reaction mechanism for H2 and Air from Mueller at el. 2 Simulations of three dimensional turbulent diffusion flames are performed. Isotropic turbulence is superimposed on an unstrain...
متن کاملEffect of Hydrogen Addition to Natural Gas on Homogeneous Charge Compression Ignition Combustion Engines Performance and Emissions Using a Thermodynamic Simulation
The HCCI combustion process is initiated due to auto-ignition of fuel/air mixture which is dominated by chemical kinetics and therefore fuel composition has a significant effect on engine operation and a detailed reaction mechanism is essential to analysis HCCI combustion. A single zone-model permits to have a detailed chemical kinetics modeling for practical fuels. In this study a single-zone ...
متن کاملStudying the Effect of Reformer Gas and Exhaust Gas Recirculation on Homogeneous Charge Compression Ignition Engine Operation
Combustion in homogeneous charge compression ignition (HCCI) engine is controlled auto ignition of well-mixed fuel, air and residual gas. Since onset of HCCI combustion depends on the auto ignition of fuel/air mixture, there is no direct control on the start of combustion process. Therefore, HCCI combustion becomes unstable rather easily especially at lower and higher engine load. Charge strati...
متن کاملStructure and Propagation of Triple Flames in Partially Premixed Hydrogen–Air Mixtures
The characteristics of triple flames in a hydrogen–air mixing layer are studied using direct numerical simulation with detailed chemistry. Triple flames are initiated by imposing a temperature ignition source in the center of a scalar mixing layer of nonuniform thickness, thereby forming a pair of freely propagating triple flames. Two different fuel streams are studied: pure hydrogen and hydrog...
متن کامل